# Asian Resonance **Electro-Optical Uv Spectra Analysis of** Imipramine By Using First Principal Paper Id.: 15466, Submission Date: 05/01/2022, Acceptance Date: 17/01/2022, Publication Date: 20/01/2022

#### Abstract

In ongoing paper geometry optimization of Imipramine has been done by using combination of DFT/B3LYP method and 6-311G (d,p) basis set without any symmetry constrain. The electronic properties of title molecule are calculated by HOMO LUMO MESP plot. The HOMO LUMO plot gives nature and value of chemical reactivity of title molecule. The various optical parameters are calculated by using same level theory. The UV spectra of title molecule are calculated by using time dependent theory with same level theory.

#### Keywords : DFT, HOMO, LUMO, MESP, UV spectra Introduction

**Rajeev Mishra** 

Associate Professor, Dept. of Physics, Sri J.N.M.P.G. College, Lucknow, U.P., India

#### **O P Yadav**

Associate Professor, Dept. of Physics, K S Saket P G College Ayodhya, U.P., India

#### **Gaurav Mishra**

Associate Professor, Dept. of Physics, K S Saket P G College Ayodhya, U.P , India

Last few decades after discovering fast high-performance computational facilities quantum chemical methods are important tools to determine structure stability and other properties of molecules. The quantum chemical methods are important to know about knowledge about transition states. Imipramine is tricyclic antidepressant which affects brain. This affect makes people unbalanced which cause depression. The title molecule is used as important drug for treatment of symptoms of depression [1]. **Objective of the Study** 

Some electronics properties of Imipramine molecules are calculated by HOMO,LUMO,MESP plots.Various optical parameters like Polarisability and Hyperpolarizability are also calculated.

#### **Review of Literature**

The most common name of Imipramine is known as Melipramine, G-22355. The title molecule shows important applications as synthons of numerous natural and semisynthetic pharmacological agents like  $\beta$ -lactams [2]. The pharmacological title molecule has used as anti HIV agent [3], antimutagenic [4], anticancer [5], anti- inflammatory [6], analgesic [7], antibiotic [8] activity. In present communications geometry of title molecule is fully optimized by using combination of DFT/B3LYP method and 6-311G(d,p) basis set. The UV spectra of title molecule are obtained by using TDDFT method by using same level theory which gave important aspect about optical electron. The chemical property of title molecule is calculated with help of frontier molecular orbitals. The title molecule shows antisymmetric aromatic structure so behaves as good NLO agents. The self-organized dynamic geometry of the liquid crystal (LC) equipments has immense probability for useful molecular systems [9]. From last few decades after growing fast computational technique the liquid crystalline characteristics simulation, modeling has been done by using quantum chemical properties. The HOMO,LUMO,MESP dipole moment mean polarizability anisotropic polarizability as well as hyperpolarizability molecular reactivity, charge transfer, interactions, parameters are used to determine its electro-optical properties of any arrangements.[10-12] The NLO active utensils having significant in file photosensitive switching units [13-14] and in nonlinear optics [15]. In ongoing research[16-21] we have fully optimized structure of the molecule namely, imipramine using DFT method and basis set B3LYP/6-311G (d,p). The UV spectra of title molecule are calculated by TDDFT method by using same level theory. The optical parameters like mean polarizability anisotropic polarizability MR, hyperpolarizability. In our best knowledge no such type study ever else reported .This study provides valuable information to researcher for further work on title molecule. **Computational Details** 

The geometry of title molecule fully optimized with Gaussian 09 suite [22]of program by using combination DFT/B3LYP[23-24] method and 6-311G (d,p) basis set without any symmetry constrain. The HOMO LUMO, MESP contour is plotted with help of Gauss View 5.0 program package.[25] The UV spectra of title molecule are studied by using time dependent theory by using same level theory. The NLO property of title molecule is calculated by using same level theory.

#### **Results and Discussion**

The geometry of title molecule (fig-1) by using combination of DFT/B3LYP method and 6-311G(d,p) basis Set. The optimized geometry is unsymmetrical so C1 symmetry having energy -2321a.u. the animated gauss view shows that title molecule

# Asian Resonance

having contains three three <u>rings</u> fused together with a <u>side chain</u> of dimethylamino group. The calculated bond angle bond lengths of title molecule are listed in table-1.

| Electronic properties<br>and UV spectra | The highest occupied molecular orbital HOMO and lowest unoccupied molecular orbital LUMO are frontier molecular orbitals plays important role to determine chemical reactivity of molecule. The HOMO LUMO energy gap is indirectly varies as chemical reactivity.[26] A lower energy gap means more polarization and vice versa. The higher gap means lower chemical reactivity and vice versa. The calculated energy gap of title molecule shows that molecule is less chemically reactive. The HOMO and LUMO of title molecule is lying at -0.2154 a.u. and -0.0765 a.u. respectively. The HOMO LUMO plot of title molecule is shown in fig-2. The both HOMO LUMO are distributed over whole molecule except dimethylamino group. The HOMO LUMO of title molecule are p orbitals however nodes in HOMOs and LUMOs are located almost symmetrically. The molecular electrostatic potential is important device to appreciate the location for the electrophilic and nucleophilic hit in a molecule. The MESP drawing is especially helpful in the examination of the molecular geometry with its physicochemical property relationships [27-34]. The strength of electrostatic potential region. The MESP shown in Figure 3. The surface map demonstrate obviously one negative potential regions by N ofdimethylamino group. Time dependent density functional theory (TD–DFT) method is significant instrument for studying the nature of the transitions of UV–Vis spectrum (Fig-4) of the title compound .The calculated high oscillatory strength of electronic transitions are of are listed in Table-3. TD–DFT calculations display sharp peak at 175nm 174nm which originate mainly due to H-2 $\rightarrow$ L+3(14%),H $\rightarrow$ L(33%),H-1 $\rightarrow$ L+1(13%)andH-2 $\rightarrow$ L+2(15%),H-1 $\rightarrow$ L+3(17%), H $\rightarrow$ L+3(33%)transitions respectively.                                                                                                              |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NLO properties                          | Electric moments such as dipole moment, polarizability and first order hyperpolarizability have been calculated at DFT-B3LYP/6-311++G(d,p) level for the prediction of non linear optical behavior of the title molecule under examine. The optical parameter e.g dipole moment $\mu$ , mean polarizability <a> and first static hyperpolarizability <math>\beta</math> are calculated by using same level theory. The [35], the total dipole moment and the mean polarizability in a Cartesian frame is defined by <math display="block">\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}</math> <math display="block"><a> = 1/3 [\alpha_{xx} + \alpha_{yy} + \alpha_{zz}]</a></math> The total intrinsic hyperpolarizability <math>\beta_{TOTAL}</math> [36] is defined as <math display="block">\beta_{TOTAL} = [\beta_x^2 + \beta_y^2 + \beta_z^2]^{1/2}; \text{ where } \beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}, \beta_y = \beta_{yyy} + \beta_{yzz} + \beta_{yxx}, \beta_z = \beta_{zzz} + \beta_{zxx} + \beta_{zyy}.</math> <math display="block">\Delta \alpha = []^{1/2}</math> The molar refractive index are calculated by [37-39] <math display="block">MR = []() = 1.33 \alpha \pi N</math> Non linear optics explain the performance of light in nonlinear media Nonlinear optical (NLO) belongings happen from the exchanges of electromagnetic fields in different media to give way new fields adjust in wavenumber. The mean polarizability and hyperpolarizability are extremely valuable standard for calculating the non linear optical actions of title molecule. All calculated optical parameter like mean polarizability, anisotropic polarizability, order parameters, molar refractivity, hyperpolarizability are listed in table The calculated hyperpolarizability of title molecule is11.8767 \times 10^{-30} esu which is nearly 61 times of <math>\beta_{total}</math> of urea (0.1947 × 10<sup>-30</sup> e.s.u). The title molecule is good NLO agent in future.</a> |
| Conclusion                              | In this paper geometry optimization NLO property of title molecule has been done by combination of DFT/B3LYP method and 6-311G (d,p) basis set. The calculated hyperpolarizability of title molecule is nearly 61 times greater than hyperpolarizability of urea. The moment of $\pi$ electron is responsible for polarization in title molecule which causes its high polarizability. The calculated HOMO-LUMO gap indicates that title molecule is less chemically reactive. The MESP plot shows that N n dimethyl amine group is most electronegative site of title molecule. The UV spectra show that prominent peak occurs at 175 nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1.

2.

| Asian | Resonance |
|-------|-----------|
|       |           |

Reference

- S. Hardainiyan, K. Kumar, B. C. Nandy, R. Saxena. Int J Pharm Pharm Sci 2017; 9(6):220-225.
- L. Bonsignore, F. Cottiglia, H. Elkhaili, F. Jehl, S. M. Laúagna, G. Loy, F. Manna, H. Monteil, D. Pompei, D. Secci. Farmaco.1998, 53, 425-430.
- D. Bhaúsar, J. Triúedi, S. Parekh, M. Saúant, S. Thakrar, A. Baúishi, A. Radadiya, H. ´Yala, J. Lunagariya, M. Parmar. Bioorg. Med. Chem. Lett. 2011, 21, 3443-3446.
- 4. C. A. Kontogiorgis, D. J. Hadjipaúlou-Litina, J. Med. Chem. 2005, 48, 6400-6408.
- 5. D. Zhi Qiang, J. B. Shi, B. A. Song, X. H. Liu, RSC Adú. 2014, 4, 5607-5617.
- J. M. Timonen, R. M. Nieminen, O. Sareila, A. Goulas, L. J. Moilanen, M. Haukka, P. Yainiotalo, E. Moilanen, P. H. Aulaskari, Eur. J. Med. Chem. 2011, 46, 3845-3850.
- 7. S. Khode, Y. Maddi, P. Aragade, M. Palkar, P. K. Ronad, S. Mamledesai, A. Thippeswamy, D. Satyanarayana,Eur. J. Med. Chem.2009, 44, 1682-1688.
- 8. F. Chimenti, B. Bizzarri, A. Bolasco, D. Secci, P. Chimenti, S. Carradori, A. Granese, D. Riúanera, D. Lilli, M. M. Scaltrito, Eur. J. Med. Chem. 2006, 41, 208-212.
- 9. G.W. Gray, Molecular Structure and Properties of Liquid Crystals, Academic Press, New York, 1962.
- 10. S.N. Tiwari, D. Sharma, J. Mol. Liq. 207 (2015) 99–106.
- 11. D. Sharma, S.N. Tiwari, J. Mol. Liq. 214 (2016) 128–135.
- 12. S.N. Tiwari, D. Sharma, J. Mol. Liq. 244 (2017) 241–251.
- 13. S. Patari, A. Nath, Optoelectronic. Rev. 26 (2018) 35–43.
- 14. H.A. Ahmed, M.M. Naoum, G.R. Saad, Liq. Cryst. 43 (2016) 1259–1267.
- 15. J.M.S. Fonseca, L.M.N.B.F. Santos, M.J.S. Monte, J. Chem. Eng. Data 55 (2010)2238–2245.
- 16. A. Dwivedi, A K pandey, N misra, Spectroscopy: An International Journal Volume 27 (2012), Issue 3, Pages 155–166 doi:10.1155/2012/486304.
- 17. A. Dwivedi, A K pandey, N misra, ., Spectroscopy: An International Journal 26 (2011) 367–385.
- 18. A. Dwivedi, N misra,, Der Pharma Chemica, 2010, 2(2): 58-65. [ISSN 0975-413X].
- 19. A. Dwivedi, A K pandey, N misra,, S Trivedi, Der Pharma Chemica, 2011, 3(3):427-448.
- 20. A. Dwivedi, A K pandey, N misra,, Spectroscopy, Volume 2013 (2013), Article ID 937915, 11 pages.
- 21. A Bajpai, AK Pandey, K Pandey, A Dwivedi, Journal of Computational Methods in Molecular Design 4 (1), 64-69.
- 22. Frisch, M. J. et al Gaussian 09; Gaussian, Inc., Pittsburgh, PA, 2009.
- 23. A. D. Becke, J. Chem, Phys. 1993, 98, 5648-5652.
- 24. C. Lee, W. Yang, R. G. Parr, Phys. Reú. B. 1988, 1337, 785-789.
- 25. A.Frisch, A.B.Nelson, AJ.Holder, Gauss view, Inc.Pittsburgh PA, 2000.
- 26. I Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976.
- 27. S.R.Gadre and R.K. Pathak, Maximal and minimal characteristics of molecular electrostatic potentials, J. Chem. Phys. 93 (1990), pp. 1770–1774.
- 28. S.R.Gadre and I.H. Shrivastava, Shapes and sizes of molecular anionsviatopographicalanalysisofelectrostaticpotential, J.Chem. Phys. 94 (1991), pp. 4384–4390.
- 29. J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, 1996.
- 30. Alkorta and J.J. Perez, Molecular polarization potential maps of the nucleic acid bases, Int. J. Quant. Chem. 57 (1996), pp. 123–135.
- 31. E.Scrocco and J. Tomasi, Advances in Quantum Chemistry, Vol. 2, P. Lowdin, ed., Academic Press, New York, 1978.
- 32. F.J. Luque, M. Orozco, P.K. Bhadane, and S.R. Gadre, SCRF calculation of the effect of water on the topology of the molecular electrostatic potential, J. Phys. Chem. 97 (1993), pp. 9380–9384.
- 33. J. Sponer and P. Hobza, DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations, Int. J. Quant. Chem. 57 (1996), pp. 959–970.
- 34. A. D. Buckingham, Adv. Chem. Phys. 1967, 12, 107-142.
- 35. D. R. Kanis, M. A. Ratner and T. J. Marks, Chem. Rev., 1994, 94, 195-242.
- 36. J.A. Padrón, R. Carasco, R.F. Pellón, J. Pharm. Pharmaceut. Sci. 5 (2002) 258–266.

- Asian Resonance
- R.P. Verma, C. Hansch, Bioorg. Med. Chem. 13 (2005) 2355–2372.
   R.P. Verma, A. Kurup, C. Hansch, Bioorg. Med. Chem. 13 (2005) 237–255.
- 39. M.F. Vuks, Opt. Spectrosc. 20, 361 (1966)

| Table 1. Selected bon<br>level, IMPRA MINE | d lengths (angstro | ms), bond angles (d    | egrees) calculated at the | B3LYP/6-311G (d, p) |
|--------------------------------------------|--------------------|------------------------|---------------------------|---------------------|
| Parameter                                  | Calculated         | Parameter              | Calculated                |                     |
| C1-C2                                      | 1.524              |                        | C2-C1-C3                  | 117.9               |
| C1-C3 1 535                                |                    |                        | C2-C1-H22                 | 108.1               |
| C1-H22 1 097                               |                    |                        | C3-C1-H22                 | 108.0               |
| C1-H23 1 096                               |                    |                        | H22-C1-H23                | 105.8               |
| C2-C41 415                                 |                    |                        | C1-C2-C4                  | 126.3               |
| C2-C5 1 401                                |                    |                        | C1-C2-C5                  | 115.6               |
| C3-C10                                     | 1.503              |                        | C1-C3-C10                 | 111.9               |
| C3-H24                                     | 1 094              |                        | C10-C3-H24                | 109.8               |
| C3-H25                                     | 1 0 9 5            |                        | H24-C3-H25                | 107.4               |
| C4-N6                                      | 1.428              |                        | C2-C4-N8                  | 122.6               |
| C4-C7                                      | 1 408              |                        | NB-C4-C7                  | 118.9               |
| C5-C14                                     | 1.389              |                        | C2-C5-C14                 | 123.0               |
| C5-H26                                     | 1.086              |                        | C2-C5-H26                 | 117.9               |
| N6-C8                                      | 1.431              |                        | C4-N6-C8                  | 118.2               |
| N8-C9                                      | 1.467              |                        | C8-N6-C9                  | 117.3               |
| C7-C13                                     | 1.389              |                        | C4-C7-H27                 | 119.4               |
| C7-H27                                     | 1.082              |                        | N6-C8-C10                 | 118.6               |
| C8-C10                                     | 1.403              |                        | C10-C8-C11                | 119.8               |
| C8-C11                                     | 1.399              |                        | N8-C9-C17                 | 112.7               |
| C9-C17                                     | 1.533              |                        | N6-C9-H28                 | 112.6               |
| C9-H28                                     | 1.102              |                        | C17-C9-H28                | 109.6               |
| C9-H29                                     | 1.092              |                        | C3-C10-C8                 | 118.5               |
| C10-C12                                    | 1.396              |                        | C8-C11-C16                | 120.5               |
| C11-C16                                    | 1.393 C8           | 3-C11-H30              | 119.9                     |                     |
| C11-H30                                    | 1.084C1            | 0-C12-H31              | 119.1                     |                     |
| C12-C15                                    | 1.393C1            | 5-C12-H31              | 119.8                     |                     |
| C12-H31                                    | 1.086C5            | -C14-H33               | 120.4                     |                     |
| C13-C14                                    | 1.391C1            | 2-C15-H34              | 120.1                     |                     |
| C13-H32                                    | 1.085C1            | 1-C16-C15              | 120.0                     |                     |
| C14-H33                                    | 1.084C9            | -C17-C18               | 110.9                     |                     |
| C15-C16                                    | 1.393C9            | -C17-H36               | 110.9                     |                     |
| C15-H34                                    | 1.084C1            | 8-C17-H36              | 108.7                     |                     |
| C16-H35                                    | 1.084H3            | 8-C17-H37              | 107.3                     |                     |
| C17-C18                                    | 1.532C1            | 7-C18-N19              | 113.8                     |                     |
| C17-H38                                    | 1.093C1            | 7-C18-H38              | 108.7                     |                     |
| C18-N19                                    | 1.463N1            | 9-C18-H38              | 107.0                     |                     |
| C18-H38                                    | 1.095C1            | 8-N19-C20              | 1112                      |                     |
| C18-H39                                    | 1.109C1            | 8-N19-C21              | 112.9                     |                     |
| N19-G20                                    | 1.45/N1            | 9-020-H40<br>0.020 H42 | 109.9                     |                     |
| N19-G21                                    | 1.458H4            | 0-020-H42              | 108.1                     |                     |
| C20-H40                                    | 1.093N1            | 9-021-H43              | 110.7                     |                     |
| 020-H92                                    | 1.10/H4            | 4-U21-H40              | 108.0                     |                     |
| G21-H93                                    | 1.091              |                        |                           |                     |

| Table-2                                                                           |
|-----------------------------------------------------------------------------------|
| The calculated electronic transitions: E (eV), oscillatory strength (f), λmax(nm) |
| using TD–DFT/B3LYP/6–311G(d,p)                                                    |

| S.<br>N. | Electronic<br>transitions   | E<br>(eV) | Oscillat<br>ory<br>strength<br>( <i>f</i> ) | Calculated(λ<br>max) | %<br>contribut<br>ion | Assignm<br>ent                  |
|----------|-----------------------------|-----------|---------------------------------------------|----------------------|-----------------------|---------------------------------|
| 1        | H-2→L+3<br>H→L<br>H-1→L+1   | 7.07      | 0.101                                       | 175                  | 14%<br>33%<br>13%     | n <sub>p</sub> →n* <sub>p</sub> |
| 2        | H-2→L+2<br>H-1→L+3<br>H→L+3 | 7.13      | 0.060                                       | 174                  | 15%<br>17%<br>33%     | n <sub>p</sub> →π*              |

# **Asian Resonance**

|   | 3 | H-3→L+1<br>H-1→L<br>H-1→L+2 | 7.25 | 0.007 | 171 | 38%<br>21%<br>15% | $n_p \rightarrow \sigma^*$ |
|---|---|-----------------------------|------|-------|-----|-------------------|----------------------------|
| 1 |   |                             |      |       |     |                   |                            |

| Table-3<br>Polarizability and Hyperpolarizability of title molecule |                        |                               |                      |  |  |  |
|---------------------------------------------------------------------|------------------------|-------------------------------|----------------------|--|--|--|
| S.NO.                                                               | PARAMETER              |                               | POLARIZABILITY       |  |  |  |
| 1.                                                                  | α <sub>xx</sub>        |                               | 126.1245             |  |  |  |
| 2.                                                                  | α <sub>YY</sub>        |                               | 126.2536             |  |  |  |
| 3.                                                                  | a <sub>zz</sub>        |                               | 124.5006             |  |  |  |
| 4.                                                                  | α <sub>xy</sub>        |                               | 3.7274               |  |  |  |
| 5.                                                                  | α <sub>xz</sub>        |                               | 2.2809               |  |  |  |
| 6.                                                                  | $\alpha_{YZ}$          |                               | -0.4862              |  |  |  |
|                                                                     | $\alpha_{total}$       |                               | 125.6262             |  |  |  |
| S.NO.                                                               | Parameter              |                               | Hyper Polarizability |  |  |  |
| 1.                                                                  | β <sub>xxx</sub>       |                               | 246.6415             |  |  |  |
| 2.                                                                  | β <sub>ΥΥΥ</sub>       |                               | 152.8932             |  |  |  |
| 3.                                                                  | β <sub>zzz</sub>       |                               | 71.445               |  |  |  |
| 4.                                                                  | β <sub>XYY</sub>       |                               | 17.7618              |  |  |  |
| 5.                                                                  | β <sub>xxy</sub>       |                               | 5.977                |  |  |  |
| 6.                                                                  | β <sub>xxz</sub>       |                               | -15.3954             |  |  |  |
| 7.                                                                  | β <sub>xzz</sub>       |                               | -3.4028              |  |  |  |
| 8.                                                                  | β <sub>yzz</sub>       |                               | 1.4464               |  |  |  |
| 9. β <sub>YYZ</sub>                                                 |                        |                               | -1.6516              |  |  |  |
| 10.                                                                 | β <sub>xyz</sub>       |                               | 1.4176               |  |  |  |
|                                                                     | $\beta_{total}$        | 11.8767x10 <sup>-30</sup> esu |                      |  |  |  |
|                                                                     | $\alpha_{anisotropic}$ | 81.6543                       |                      |  |  |  |
|                                                                     | MR                     | 46.993                        |                      |  |  |  |
| Δα                                                                  |                        |                               | 0.1291               |  |  |  |

# Asian Resonance



Figure 1. Molecular structure of IMIPRAMINE optimized at B3LYP/6-311G (d, p) level.



Figure 2 HOMO and LUMO surfaces of IMIPRAMINE.

**Asian Resonance** 

E: ISSN No. 2349-9443





